Discovery of the "Compton Shoulder" in the Iron Line from GX301–2

Shin Watanabe(ISAS)

M. Sako, M. Ishida, Y. Ishisaki, S. Kahn, T. Kohmura. U. Morita,

F. Nagase, F. Paerels, T. Takahashi

Introduction(Compton scattering)

When an X-ray photon (E_0) is Compton-scattered by an electron in a cold material,

$$E_1 = \frac{E_0}{1 + E_0 / mc^2 \left(1 - \cos \theta \right)}$$

If any X-ray emission lines are observed,

"Compton shoulder"

- the direct evidence of Compton scattering
- a probe for the physical states of the materials

Observations with high energy resolution hold the key!

Iron K α line(6.4keV) -> Compton shoulder: 6.24-6.40keV

width: 160eV

Wave length

Energy

Chandra HETG is capable of detecting Compton shoulders

Observation of GX301–2 with Chandra HETG

GX301-2

- High Mass X-ray Binary (NS and super-giant(B2lae))
- Strong iron Kα line (EW ~ 1keV)
 -> the most promising target!!

We have observed at 3 orbital phases (Intermediate(0.167-0.179) ~40ksec
Near-Apastron(0.480-0.497) ~60ksec
Pre-Periastron(0.970-0.982) ~40ksec)

Result of the observation

Energy spectrum from HEG ±1 order data

A "clear" Compton shoulder is detected for the first time!

Variability of the Compton shoulder

Light curve of HEG ±1 order

The first ~20 ksec The second ~20 ksec

How to reproduce the shoulder

Issues to be considered

- Two competing physical processes (photoelectric absorption and Compton scattering)
- Multiple scatterings
 N_H ~ 10²⁴cm⁻² —> Optical depth of each process is ~1
- Geometry

It is too complex for analytical approaches.

The easiest way is the Monte Carlo simulation of photon transport.

The Monte Carlo simulation

- A homogeneous spherical cloud
 - •The NS (the power-law X-ray source) is located at the center

Photoelectric absorption and Compton scattering

Results of Monte Carlo simulations(1)

A transition when NH is changed. (kTe is fixed 0eV)

(Metal Abundance: 0.7 cosmic)

The flux ratio of the shoulder to the line vs NH

Metal abundance for cosmic abundance (Feldman 1992)

0.5 x cosmic 0.7 x cosmic 1.0 x cosmic

Results of Monte Carlo simulations(2)

A transition when kTe is changed. (NH is fixed 1x10²⁴ cm⁻²)

(Metal Abundance: 0.7 cosmic)

The flux ratio of the shoulder to the line

- → the optical depth and the abundance of the cloud
 The shape of the shoulder
 - the temperature of scattering electrons

Fitting of the Compton shoulder

0.7 cosmic abundance is adopted as the metal abundance

 N_{H} 11.7+2.3/-2.0 x10²³ cm⁻², 8.4±1.6 x10²³ cm⁻² Upper limit of kTe < 3.7eV, <0.7eV (90%)

The new means for probing materials around X-ray sources!

N_H from the Compton shoulder can reproduce the whole spectrum shape

Full Monte Carlo simulation

- a spherical cloud
- a power-law source with Γ =1.0
- a metal abundance: 0.7 cosmic
- N_H derived from the Compton shoulder

We can obtain a self-consistent solution from the analysis of the Compton shoulder!

Summary

- We discovered the Compton shoulder in the iron Kα line of GX301–2
- From properties of the Compton shoulder, we have obtained physical parameters characterizing the material around the X-ray source, using Monte Carlo simulations.
- The new means for probing cold materials using Compton shoulders was established.

Future

ASTRO-E2 XRS

- ◆ Larger effective area(300cm²@6keV)
 - -> other X-ray binaries, AGNs diffuse sources (the Galactic center region)
- Excellent energy resolution (6eV@6keV)
 - -> geometrical conditions